TDT4120 Algorithms and Data Structures

Examination, August 5, 2024, 09:00—-13:00

Academic contact Magnus Lie Hetland

Support material code E

Problems

The following is taken from ENQUEUE:

1 Q[Q.tail] = x

2 if Q.tail == Q.size

3 [

4 else Q.tail = Q.tail +1

What is the redacted part supposed to be?

Suppose you run MST-PRiM and MST-KruskAL on a disconnected graph. Which
of the algorithms will find a minimum spanning tree for each of the connected
components of the graph? Explain briefly.

That is, which one will construct a disconnected solution that covers the entire
graph?

One of the loops in COUNTING-SORT goes from n down to 1 (for j = n downto 1).

What is the consequence of changing the direction of the loop (for j = 1 to n)?

Note: No explanation is required here.

If you are to describe the best-case running time of an algorithm, which asymp-
totic notation (O, (), or ®) should you use, if possible?

In a hash table with hash function /, what does it mean for the keys kj and k;
to collide?

What is the amortized running time of TABLE-INSERT?

This refers to insertion into a dynamic table, where we either can insert the ele-
ment directly if there is room, or must allocate a new and larger table otherwise.
Provide the answer using ©-notation.



10

11

12

13

Figure 1 Graph for problem 10

You have a directed, unweighted graph G = (V,E), and you are to find the
shortest paths from all vertices in V to a given vertex t. How would you proceed?

You want to find the longest simple path from vertex s to vertex t in a weighted
graph. How could you do this? Are there cases where your method will not
work? Explain briefly.

The solution to the 0-1 knapsack problem has a running time of © (W), where n
is the number of items and W is the capacity of the knapsack. Is this a polynomial-
time algorithm? Explain briefly.

You are to represent the graph in Figure 1 as an adjacency matrix. Fillin 0 and 1
in the table below.

What is a vertex cover?

In the textbook definition of flow networks, antiparallel edges are not allowed,
meaning we cannot have both an edge from v; to v, and one from v, to v;. If
we do have such edges, how can we handle the situation?

In a similar manner to BELLMAN-FORD, you are to perform ReELAX on all edges
in the following graph once. The order is not specified.

0~-9~-0~-0~-9



14

15

16

17

18

When you are finished, what are the smallest and largest values 5.d can have
(i.e., v.d for vertex 5, which is highlighted)? Provide the answer as two numbers,
separated by a comma.

Each vertex’s d-value before you start is given in the vertex in the figure, so for
example, 4.d = 6.

You are not to perform the entire BELLMAN-FORD algorithm, but update the
estimate once along each edge, in some order.

Solve the following recurrence:
T(n)=T(n—1)-22" (n>1)
T(0) =2

Give your answer exactly, that is, without asymptotic notation.

In TRANSITIVE-CLOSURE, t;; indicates whether there is a path from i to j. Now
assume that the directed graph you receive as input is acyclic. How can you
modify the algorithm so that ¢;; becomes the number of paths from i to j?

You may describe your solution as a modification of FLoYD-WARSHALL if you
prefer.

A problem with QUICKSORT is that the running time is poor if the pivot ele-
ment is poorly chosen. Can you choose the pivot so that the running time is
guaranteed to be ®(n1gn)? Explain.

This is about modifying only how the pivot is chosen; the rest of QUICKSORT
should be performed as usual. Each recursive call should also be executed in the
same manner, so you cannot, for example, use MERGE-SORT initially to “cheat”
your way to the correct running time.

You have n items and are to give one to each of n people. The people may prefer
different items. Ideally, you don’t want anyone to envy anyone else, but you
realize this probably is not possible.

Instead, you create a lottery for each item. Rather than giving out the items
directly, you give each person a random priority for each item. Your goal is
that no one should envy someone who has a lower priority.

Will it always be possible to distribute the items in this way in polynomial time
(assuming P # NP)? If so, how? If not, why not?

If you have received item x, I should not envy you unless I have a lower priority
for item x.

Your friend Lurvik is studying two decision problems, A and B, where he has an
exponential algorithm for A and a polynomial algorithm for B. He has shown
that A cannot be solved faster than exponentially.



19

20

Algorithm 1 The inverse of Z1p

Unzrp(x)
1 if x == NULL
let L, R be new lists
else allocate new nodes y and z
y.key = x.key(1]
z.key = x.key|2]
L = Unzrp(x.next)[1]
R = Unzrp(x.next)|[2]
List-PREPEND(L, i)
9 LisT-PREPEND(R, 2)
10 return (L, R)

R g O O = W IN

Lurvik has also found reductions from A to B and from B to A. What can you
say about the running time of each of these reductions? Explain briefly.

If we consider A and B as formal languages, Lurvik has found two reduction
functions f and g, where

x € Aif and only if f(x) € Band
x € Bif and only if g(x) € A.

The question is what you can say about the running time required to compute
the reduction functions f and g.

In the syllabus, a reduction is generally assumed to have polynomial running
time, but you can disregard that here.

In many programming languages, there is a function called Z1p, which takes in
two lists and returns a list of pairs, where pair i consists of element i from each
of the two lists.

The procedure Unzir (Algorithm 1) does the opposite. It takes the head of a
linked list of pairs (arrays of length 2) and distributes them into two lists L
and R.

How would you change the algorithm to improve the running time? What is
the running time before and after your improvement? Explain.

COUNTING-SORT(A, 1, k) takes in an array A[l:n] with integers in the range
0,...,k and fills an array C[0: k] with the number of occurrences in A of each
possible value, using ®(n + k) operations.

You are to perform a similar counting where A is already sorted. You can as-

sume that you also receive C as a parameter, and that C is initialized such that
Cli]=0fori=0,..., k.

Use the divide and conquer method to construct an algorithm that solves the prob-
lem with a running time of O(n) in general, but which is faster than this when



A contains many duplicates.



